Algebra Question with answer Practice Question and Answer
8 Q: If $$x+{1\over x}=c{1\over c}$$ then the value of x
761 06343d7e4e76f2264c5df97a4
6343d7e4e76f2264c5df97a4- 1c, 1\ctrue
- 2c, c2false
- 3c, 2cfalse
- 40, 1false
- Show AnswerHide Answer
- Workspace
- SingleChoice
Answer : 1. "c, 1\c "
Q: If a + b = 1 and a3 + b3 + 3ab = k, then the value of k is
760 06409ca61df653d9ac22bc376
6409ca61df653d9ac22bc376- 11true
- 23false
- 35false
- 47false
- Show AnswerHide Answer
- Workspace
- SingleChoice
Answer : 1. "1 "
Q: if x+y =3 and $${1\over x}+{1\over y}= -{3\over 10}$$ then the value of (x2+y2) is :
756 0648af48bb50f5316a46369ad
648af48bb50f5316a46369ad- 129true
- 228false
- 326false
- 434false
- Show AnswerHide Answer
- Workspace
- SingleChoice
Answer : 1. "29"
Q:Directions: In each of these questions, two equations (i) and (ii) are given, you have to solve both the equations and give answer accordingly.
(i) 21x² + 10x + 1 = 0
(ii) 24y²+ 26y + 5 = 0
749 064d5cfffa79837744725ae33
64d5cfffa79837744725ae33(ii) 24y²+ 26y + 5 = 0
- 1x ≤ yfalse
- 2x ≥ yfalse
- 3x > yfalse
- 4x < yfalse
- 5x = y or no relation can be established between x & y.true
- Show AnswerHide Answer
- Workspace
- SingleChoice
Answer : 5. "x = y or no relation can be established between x & y."
Q: If 9x2 + y2 = 37 and xy = 2, x, y>0, then the value of (27x3+ y3) is:
744 064bfb4ce2dc867f593162c69
64bfb4ce2dc867f593162c69- 1301false
- 2217true
- 3207false
- 4259false
- Show AnswerHide Answer
- Workspace
- SingleChoice
Answer : 2. "217"
Q: If x = y = 333 and z = 334, then the value of x3 + y3 + z3 – 3xyz is
743 06409cae686fd4161467deaae
6409cae686fd4161467deaae- 10false
- 2667false
- 31000true
- 42334false
- Show AnswerHide Answer
- Workspace
- SingleChoice
Answer : 3. "1000 "
Q:Directions: In each of these questions, two equations (i) and (ii) are given, you have to solve both the equations and give answer accordingly.
(i) 3x² + 11x + 10 = 0
(ii) 2y² + 11y + 14 = 0
740 064d5cec3bd50dd8e2e15c472
64d5cec3bd50dd8e2e15c472(ii) 2y² + 11y + 14 = 0
- 1x ≥ ytrue
- 2x ≤ yfalse
- 3x > yfalse
- 4x < yfalse
- 5x = y or no relation can be established between x & y.false
- Show AnswerHide Answer
- Workspace
- SingleChoice
Answer : 1. "x ≥ y"
Q: if $$x^4+{16\over x^4}=15617, x>0$$ then find the value of $$x+{2\over x}$$
740 06481a06723e51f4777094a8f
6481a06723e51f4777094a8f- 1$$ \sqrt {121} $$false
- 2$$ \sqrt {127} $$false
- 3$$ \sqrt {129} $$true
- 4$$ \sqrt {123} $$false
- Show AnswerHide Answer
- Workspace
- SingleChoice

