Geometry Practice Question and Answer
8 Q: In a triangle, if orthocentre, circumcentre, incentre and centroid coincide, then the triangle must be
697 06332e116bf6167733bdb91ef
6332e116bf6167733bdb91ef- 1obtuse angledfalse
- 2isoscelesfalse
- 3equilateraltrue
- 4right-angledfalse
- Show Answer
- Workspace
- SingleChoice
Answer : 3. "equilateral "
Q: 'The total surface area of a cube is 600 sq cm, what will be the length of its diagonal?
696 063108fa61547bf2f2cc67d45
63108fa61547bf2f2cc67d45- 120 cmfalse
- 210√2 cmfalse
- 310 √3 cmtrue
- 420/3 cmfalse
- Show Answer
- Workspace
- SingleChoice
Answer : 3. "10 √3 cm"
Q: In ΔABC, D and E are points on the sides AB and AC, respectively, such that DE || BC. If AD = 5 cm, DB = 9 cm, AE = 4 cm and BC = 15.4 cm, then the sum of the lengths of DE and EC (in cm) is:
680 064c8d763a919c8488e228ff0
64c8d763a919c8488e228ff0- 111.6false
- 210.8false
- 313.4false
- 412.7true
- Show Answer
- Workspace
- SingleChoice
Answer : 4. "12.7"
Q: The centroid of an equilateral triangle PQR is L. If PQ = 6 cm, the length of PL is:
680 0649e7c1bc7d7c7e06738d47d
649e7c1bc7d7c7e06738d47d- 1false
- 2false
- 3true
- 4false
- Show Answer
- Workspace
- SingleChoice
Answer : 3. " "
Q: ABC is an isosceles triangle such that AB = AC and ∠B = 35°. AD is the median to the base BC. Then ∠BAD is
674 0645ce0c5e67f3b0a568e38bf
645ce0c5e67f3b0a568e38bf- 170°false
- 235°false
- 3110°true
- 455°false
- Show Answer
- Workspace
- SingleChoice
Answer : 3. "110°"
Q: PQRS is a cyclic quadrilateral. If ∠P is three times of ∠R and ∠S is four times of ∠Q, then the sum of ∠S + ∠R will be:
670 064b5008a23047f4c71bf536d
64b5008a23047f4c71bf536d- 1169°false
- 2171°false
- 3187°false
- 4189°true
- Show Answer
- Workspace
- SingleChoice
Answer : 4. "189°"
Q: In a triangle, if three altitudes are equal, then the triangle is
663 063318aef2ff7535af66c90f3
63318aef2ff7535af66c90f3- 1Obtusefalse
- 2Equilateraltrue
- 3Rightfalse
- 4Isoscelesfalse
- Show Answer
- Workspace
- SingleChoice
Answer : 2. "Equilateral "
Q: In △ABC, D and E are points on the sides AB and AC, respectively, such that DE || BC and DE: BC=6:7. (Area of △ ADE): (Area of trapezium BCED) = ?
661 064d1f224ebd5c374726d26ac
64d1f224ebd5c374726d26ac- 149 : 13false
- 213 : 36false
- 313 : 49false
- 436 : 13true
- Show Answer
- Workspace
- SingleChoice