Surds and Indices Problems with Solution for Competitive Exams

Vikram Singh3 years ago 11.2K Views Join Examsbookapp store google play
surds and indices problems with solutions

Surds and indices is a popular topic in competitive exams which questions are frequently asked in the exam. Some of the students face problems while solving these questions. 

So, here are given surds and indices problems with solutions, from which you can understand properly to problem levels of these questions. So, you should practice these questions because Surds and indices questions are a challenging part of quantitative aptitude in competitive exams.


Solutions of Surds and Indices Problems 


What is surds and indices?

Surds:

Let a and n are rational number and a positive integer, respectively. If a1/n is an irrational number, then a1/n is known as surds of power n.

a1/n = n√a = nth root of a.

Sign n√ is known as radical sign and n and a are known as radical power and radicand, respectively.

e.g., √2, √5, √5, a+√3 etc.

Indices:

When a number P is multiplied by itself n times, then the product is called n the power P and is written as Pn. Here, P is called the base and n is known as the index of the power.

Problems with Solutions:

$$Q.1.\ 81^{2.5}×8^{4.5}÷3^{4.8}=9^?$$

$$(A) \ 7.1 $$

$$(B) \ 9.4 $$

$$(C) \ 4.7 $$

$$(D) \ 4.5 $$


Ans .   A


Solution .   $$ 81^{2.5}×9^{4.5}÷3^{4.8}=9^? $$
$$ → {(3^4)^{2.5}×(3^2)^{4.5} \over 3^{4.8}}=9^{?} $$
$$ → {3^{10}×3^9\over3^{4.8}}=(3^2)^?$$
$$ → 3^{19-4.8}=(3^2)^?$$
$$2×?=14.2$$
$$ → ?={14.2\over2}=7.1$$


$$Q.2.\ 5\sqrt {5 }×5^3 ÷ 5^{-3/2}=5^{a+2}\ , then\ a\ is \ equal \ to  $$ 

$$(A) \ 4 $$

$$(B) \ 5 $$

$$(C) \ 6 $$

$$(D) \ 8 $$


Ans .  A


Solution .  $$\ 5\sqrt {5 }×5^3 ÷ 5^{-3/2}=5^{a+2}\  $$
$$ → {5.5^{1/2}×5^3\over5^{-3/2}}=5^{a+2}$$
$$ → 5^{1+{1\over2}+3}.5^{3/2}=5^{a+2} $$
$$∴ a+2 = 6 $$  
$$ a=6-2=4$$


$$Q.3.\ 2^{x-1}+2^{x+1}=2560 \ , then\ find\ the \ value \ of \ x  $$ 

$$(A) \ 10 $$

$$(B) \ 12 $$

$$(C) \ 9 $$

$$(D) \ 8 $$


Ans .   A


Solution .   $$\ 2^{x-1}+2^{x+1}=2560 \ $$
$$→ 2^{x-1}+2^2.2^{x-1}=2560$$
$$ → 2^{x-1}(1+4)= 2560  $$
$$ 2^{x-1}={2560\over5}=512 $$
$$→ 2^{x-1}=2^9$$
$$ ∴ \ x-1= 9 $$
$$x=10 $$


$$Q.4.\ \sqrt {2^n }=64, then\ n \ is \ equal \ to  $$ 

$$(A) \ 2 $$

$$(B) \ 4 $$

$$(C) \ 6 $$

$$(D) \ 12 $$


Ans .  D


Solution .  $$ \sqrt {2^n } \ = 64 → 2^{n/2}= 2^6$$
$$ Since, base \ are \ same $$
$$ ∴ {n\over2} =6  $$
$$ → n = 6×2 = 12$$


$$Q.5.Simplify\ \left( ^3\sqrt {^6\sqrt { 2^9} \  } \ \right)^4 × \left( ^6\sqrt {^3\sqrt { 2^9} \  } \ \right)^4  $$ 

$$(A) \ 2^4 $$

$$(B) \ 2^9 $$

$$(C) \ 2^3 $$

$$(D) \ 2^{16} $$


Ans .   A


Solution .   $$=   \left(2^{9×{1\over6}×{1\over3}} \right)^4 ×\left(2^{9×{1\over3}×{1\over6}} \right)^4   $$
$$= (2^{1/2})^4×(2^{1/2})^4$$
$$ = 2^2×2^2$$
$$ = 2^{2+2}=2^4$$


$$Q.6.\ 17^{3.5}×17^{7.3}÷17^{4.2}=17^? $$ 

$$(A) \ 8.4 $$

$$(B) \ 8 $$

$$(C) \ 6.6 $$

$$(D) \ 6.4$$


Ans .  C


Solution .  $$\ 17^{3.5}×17^{7.3}÷17^{4.2}=17^? $$
$$ → {17^{3.5+7.3} \over17^{4.2}}=17^? $$
$$ → 17^{10.8-4.2}=17^? $$
$$ 17^6.6 = 17^?$$
$$ Since, base \ are \ same $$
$$ ∴ ? =6.6  $$


$$ Q.7.\ If \ a = {\sqrt {3} \ \over2}, then \ the \ value \ of \ \sqrt { 1+a} \ +\sqrt {1-a} \ is   $$

$$(A) \ 2-\sqrt {3} \ $$

$$(B) \ 2+\sqrt {3} \ $$

$$(C) \ {\sqrt {3} \over2} $$

$$(D) \ \sqrt {3} \ $$


Ans .   D


Solution .   $$ \ Given \ a = {\sqrt {3} \ \over2}   $$
$$ ∴ \ \sqrt {1+a } \ + \sqrt {1-a } \ ^2 = (1+a)+(1-a)+2\sqrt { (1+a)(1-a)} \    $$
$$ [∴ (a+b)^2= a^2+b^2+2ab] $$
$$= 2+2\sqrt {1-a^2 } \ $$
$$=\left( 1+\sqrt {1-\left({\sqrt {3 } \ \over2} \right)^2 } \ \right) $$
$$ = 2\left(1+\sqrt {1-{3\over4} } \  \right) $$
$$ = 2\left(1+\sqrt {{4-3\over4} } \  \right)= 2 \left(1+{1\over2} \right)$$
$$ = 2×{3\over2} $$
$$ ∴ (\sqrt {1+a} \ + \sqrt {1+a} \ )^2 =3 $$
$$ ∴ (\sqrt {1+a} \ + \sqrt {1-a} \ )= \sqrt {3} \   $$


$$Q.8.\ {1\over(216)^{-2/3}}+{1\over(256)^{-2/3}}+{1\over(243)^{-1/5}} $$ 

$$(A) \ 103 $$

$$(B) \ 105$$

$$(C) \ 107 $$

$$(D) \ 109$$


Ans .  A


Solution .  $$\ {1\over(216)^{-2/3}}+{1\over(256)^{-2/3}}+{1\over(243)^{-1/5}} $$
$$= (216)^{2/3}+(256)^{3/4}+(243)^{1/5} $$
$$ = (6^2)^{2/3}+(4^4)^{3/4}+(3^5)^{1/5} $$
$$= 36+64+3 $$
$$ 103 $$


$$ Q.9. \ If \ \left(\sqrt {2} \ ^\sqrt {2 } \  \right)^\sqrt {2 } \ = 2^x, then \ x \ is \ equal\ to $$

$$ (A) \ 4 $$

$$ (B)\ 2 $$

$$ (C) 1 $$

$$ (D) \sqrt {2} \ $$


Ans .   C


Solution .   $$\ Given, \left(\sqrt {2} \ ^\sqrt {2 } \  \right)^\sqrt {2 } \ = 2^x$$
$$→\sqrt {2}^{\sqrt {2} × \sqrt {2} \ \ } \ = 2^x  $$
$$→ \left(\sqrt {2} \  \right)^2=2^x$$
$$ (2)^1= 2^x $$
$$ ∴  x = 1$$


$$Q.10.\ \left(  {32\over243}\right)^{-4/5} $$ 

$$(A) \ {4\over9}$$

$$(B) \ {9\over4}$$

$$(C) \ {16\over81}$$

$$(D) \ {81\over16}$$


Ans .  D


Solution .  $$\ \left(   {32\over243}\right)^{-4/5} = \left(   {2^5\over3^5}\right)^{-4/5} $$
$$=\left(  {2\over3}\right)^{5×-{-4\over3}} $$
$$=\left({2\over3}\right)^{-4}=\left({3\over4}\right)^4 = {81\over16} $$

If you want to ask something related Surds and indices questions, you can ask me anything in the comment section. Go to the next page for more practice.

Showing page 1 of 2

    Choose from these tabs.

    You may also like

    About author

    Vikram Singh

    Providing knowledgable questions of Reasoning and Aptitude for the competitive exams.

    Read more articles

      Report Error: Surds and Indices Problems with Solution for Competitive Exams

    Please Enter Message
    Error Reported Successfully